

Towards a Validated FSI Computational Framework for Supersonic Parachute Deployments

Photo Credit: NASA/JPL, California Institute of Technology

Jason Rabinovitch¹, Daniel Z. Huang², Raunak Borker², Philip Avery², Charbel Farhat², Armen Derkevorkian¹, Lee D. Peterson¹

¹Jet Propulsion Laboratory, California Institute of Technology
²Stanford University

AIAA Aviation 2019

Motivation (LDSD: ~ 30 m diameter parachute) Ringsail Parachute

Ringsail Parachute

Low Density Supersonic Decelerator (LDSD) project's Supersonic Flight Dynamics Tests (SFDT) June 28, 2014 (SFDT 1), and June 8, 2015 (SFDT 2)

What went wrong?

- SFDT-1 failed at 9,000 lbf
 - 11% of flight limit load
 - Analytically showed positive margins to a load of 80,000 lbf
- SFDT-2 failed at 79,000 lbf
 - 99% of flight limit load
 - Ringsail analytically showed positive margins to a load of 166,000 lb
- FLL should be the load at which the parachute can safely survive inflation, not its ultimate capability
- Both parachutes were subsonically tested to > 121,000 lbf!

New failure mode observed during supersonic deployment.

Credit: O'Farrell et al., AIAA-2016-3242.

Overview

- Objective: Develop a computational framework to accurately model supersonic parachute deployment that could be used as a design tool for future space missions
 - Mars-relevant supersonic tests are time consuming and expensive
 - Currently not feasible to use tests as part of the design process, only for validation
- Highly nonlinear Fluid/Structure Interaction (FSI) problem with large scale deformations
- Rigorous Validation and Verification program is needed before results can be used for design or validation efforts
- Stanford/JPL Collaboration

Embedded Boundary Method

Pros:

- Image Credit: Raunak Borker
- Allows large structural motion or deformation
- Simplifies mesh generation procedure

Huang et al., JCP, 2018

- Cons:
 - Difficult to create a mesh that will track a boundary layer without Adaptive Mesh Refinement (AMR)
 - Complicated numerical treatment required for the fluid/structure interface

Embedded Boundary Method

Pros:

- Image Credit: Raunak Borker
- Allows large structural motion or deformation
- Simplifies mesh generation procedure

Huang et al., JCP, 2018

- Cons:
 - Difficult to create a mesh that will track a boundary layer without Adaptive Mesh Refinement (AMR)
 - Complicated numerical treatment required for the fluid/structure interface

Embedded Boundary Method

Pros:

- Image Credit: Raunak Borker
- Allows large structural motion or deformation
- Simplifies mesh generation procedure

Huang et al., JCP, 2018

- Cons:
 - Difficult to create a mesh that will track a boundary layer without Adaptive Mesh Refinement (AMR)
 - Complicated numerical treatment required for the fluid/structure interface

Embedded Surface Numerical Framework

- Finite Volume method with Exact two-material Riemann Problems (FIVER)
 - Huang et al., JCP, 2018, Main et al., JCP, 2017, etc.
- Analytical Riemann problem at fluid/structure interface

ill-conditioning

Fig. 4.2. Surrogate material interfaces (two-dimensional illustration where a circle filled with a black/white color designates an active/inactive node, and the continuous and dashed lines in red color represent the true and surrogate material interfaces, respectively): case of the node-based definition of the status of a node (left); and case of the control-volume-based definition of the status of a node (right).

Recent Code Additions and Focus

- Supersonic parachute deployment specific updates
 - AMR (cite AMR paper)
 - Distance to surface
 - Hessian criteria
 - Intersecting edges
 - Porous surface modeling
 - Compared to DNS and experimental data
 - Smooth forces with embedded framework
 - Self-contact
 - Minor fixes to run on 1000+ cores
- Simulation Focus
 - Preliminary investigation of drag force sensitivity to LES/RANS modeling
 - Effect of suspension lines

1 June 1

System Level Simulation Plan

AERO Suite

- Entry vehicle embedded surface
- Triple bridle, riser, suspension lines, canopy embedded surface

MSL Parachute Schematic (Cruz et al., AIAA 2013-1250)

Free Stream Conditions

Original Freestream

- Gas: CO2
- Density =
- Mach Number =
- Pressure =
- Temperature =
- Capsule Re ~=
- Viscosity Sutherland's law
- LES -

Updated Freestream

- Gas: CO2
- Density =
- Mach Number =
- Pressure =
- Temperature =
- Capsule Re ~=
- Viscosity Sutherland's law and bulk viscosity
- LES -

Preliminary Results: Updated Initial Conditions

Preliminary Results: RANS vs LES

Preliminary Results: RANS vs LES

AMR for Suspension Lines

AMR for Suspension Lines

Preliminary Results: Effect of Suspension Lines

Static Structure LES Simulations

Ongoing Work

- Sensitivity of results to initial parachute model
 - Geometry
 - Pre-stressed or zero stressstate
- Time required for LES simulation
- Resolution requirements (fluid and structure)

Preliminary FSI Simulations

Preliminary FSI Simulations

Acknowledgements

Parts of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Daniel Huang, Philip Avery, and Charbel Farhat acknowledge partial support by a contract from JPL, and partial support by a NASA ESI Grant.

ASPIRE Supersonic Parachute Flight Test, Oct. 4, 2017 https://www.jpl.nasa.gov/video/details.php?id=1507

Capsule Simulation

- Recent works have highlighted discrepencies between numerical simulations and experimental data for compressible capsule flow (Murman et al., AIAA-2015-1930)
 - Influence of turbulence models, surface roughness, mesh refinement, Riemann solver, etc.

Images taken from Murman et al., AIAA 2015-1930. From left to right: experimental set-up in NASA Ames 11ft transonic tunnel, comparison between numerical and experimental results, and CFD surface pressure results.

Capsule Preliminary Results

- Work in progress
- Good candidate for new AERO-F AMR capabilities (Borker et al., AIAA-2018-1072)
- Parachute deployment sensitivities to wake properties is a large unknown

Surface geometry used in AIAA-2015-1930 generously provided by Scott Murman

Preliminary Simulation